approx_hsgp_hyperparams#
- pymc_marketing.mmm.hsgp.approx_hsgp_hyperparams(x, x_center, lengthscale_range, cov_func)[source]#
Use heuristics for minimum
mandcvalues.Based on recommendations from Ruitort-Mayol et. al.
In practice, you need to choose
clarge enough to handle the largest lengthscales, andmlarge enough to accommodate the smallest lengthscales.NOTE: These recommendations are based on a one-dimensional GP.
- Parameters:
- xtensor_like
The x values the HSGP will be evaluated over.
- x_centertensor_like
The center of the data.
- lengthscale_range
tuple[float,float] The range of the lengthscales. Should be a list with two elements [lengthscale_min, lengthscale_max].
- cov_func
Literal[“expquad”, “matern32”, “matern52”] The covariance function to use. Supported options are “expquad”, “matern52”, and “matern32”.
- Returns:
- Raises:
ValueErrorIf either
x_rangeorlengthscale_rangeis not in the correct order.
References
[1]Ruitort-Mayol, G., Anderson, M., Solin, A., Vehtari, A. (2022).
Practical Hilbert Space Approximate Bayesian Gaussian Processes for Probabilistic Programming