HSGPPeriodic#
- class pymc_marketing.mmm.hsgp.HSGPPeriodic(**data)[source]#
HSGP component for periodic data.
Examples
HSGPPeriodic with default configuration:
import numpy as np import pandas as pd import matplotlib.pyplot as plt from pymc_marketing.mmm import HSGPPeriodic from pymc_extras.prior import Prior seed = sum(map(ord, "Periodic GP")) rng = np.random.default_rng(seed) n = 52 * 3 dates = pd.date_range("2023-01-01", periods=n, freq="W-MON") X = np.arange(n) coords = { "time": dates, } scale = Prior("HalfNormal", sigma=1) ls = Prior("InverseGamma", alpha=2, beta=1) hsgp = HSGPPeriodic( scale=scale, m=20, cov_func="periodic", ls=ls, period=52, dims="time", ) hsgp.register_data(X) prior = hsgp.sample_prior(coords=coords, random_seed=rng) curve = prior["f"] fig, axes = hsgp.plot_curve( curve, n_samples=3, random_seed=rng, ) ax = axes[0] ax.set(xlabel="Date", ylabel="f", title="HSGP with period of 52 weeks") plt.show()
(
Source code,png,hires.png,pdf)
HSGPPeriodic with link function via
transformargumentNote
The
transformparameter must be registered or from eitherpytensor.tensororpymc.mathnamespaces. See thepymc_extras.prior.register_tensor_transform()import numpy as np import pandas as pd import matplotlib.pyplot as plt from pymc_marketing.mmm import HSGPPeriodic from pymc_extras.prior import Prior seed = sum(map(ord, "Periodic GP")) rng = np.random.default_rng(seed) n = 52 * 3 dates = pd.date_range("2023-01-01", periods=n, freq="W-MON") X = np.arange(n) coords = { "time": dates, } scale = Prior("Gamma", mu=0.25, sigma=0.1) ls = Prior("InverseGamma", alpha=2, beta=1) hsgp = HSGPPeriodic( scale=scale, m=20, cov_func="periodic", ls=ls, period=52, dims="time", transform="exp", ) hsgp.register_data(X) prior = hsgp.sample_prior(coords=coords, random_seed=rng) curve = prior["f"] fig, axes = hsgp.plot_curve( curve, n_samples=3, random_seed=rng, ) ax = axes[0] ax.set(xlabel="Date", ylabel="f", title="HSGP with period of 52 weeks") plt.show()
(
Source code,png,hires.png,pdf)
Demeaned basis for HSGPPeriodic
import numpy as np import pandas as pd import xarray as xr import matplotlib.pyplot as plt from pymc_marketing.mmm import HSGPPeriodic from pymc_marketing.plot import plot_curve seed = sum(map(ord, "Periodic GP")) rng = np.random.default_rng(seed) scale = 0.25 ls = 1 kwargs = dict(ls=ls, scale=scale, period=52, cov_func="periodic", dims="time", m=20) n = 52 * 3 dates = pd.date_range("2023-01-01", periods=n, freq="W-MON") X = np.arange(n) coords = {"time": dates} hsgp = HSGPPeriodic(demeaned_basis=False, **kwargs).register_data(X) hsgp_demeaned = HSGPPeriodic(demeaned_basis=True, **kwargs).register_data(X) def sample_curve(hsgp): return hsgp.sample_prior(coords=coords, random_seed=rng)["f"] non_demeaned = sample_curve(hsgp).rename("False") demeaned = sample_curve(hsgp_demeaned).rename("True") combined = xr.merge([non_demeaned, demeaned]).to_array("demeaned") _, axes = combined.pipe(plot_curve, "time", same_axes=True) axes[0].set(title="Demeaned the intercepty first basis") plt.show()
(
Source code,png,hires.png,pdf)
Higher dimensional HSGPPeriodic with periodic data
import numpy as np import pandas as pd import pymc as pm import matplotlib.pyplot as plt from pymc_marketing.mmm import HSGPPeriodic from pymc_extras.prior import Prior seed = sum(map(ord, "Higher dimensional HSGP with periodic data")) rng = np.random.default_rng(seed) n = 52 * 3 dates = pd.date_range("2023-01-01", periods=n, freq="W-MON") X = np.arange(n) scale = Prior("HalfNormal", sigma=1) ls = Prior("InverseGamma", alpha=2, beta=1) hsgp = HSGPPeriodic( X=X, scale=scale, ls=ls, m=20, cov_func="periodic", period=52, dims=("time", "channel", "product"), ) coords = { "time": dates, "channel": ["A", "B"], "product": ["X", "Y", "Z"], } prior = hsgp.sample_prior(coords=coords, random_seed=rng) curve = prior["f"] fig, axes = hsgp.plot_curve( curve, n_samples=3, random_seed=rng, subplot_kwargs={"figsize": (12, 8), "ncols": 3}, ) plt.show()
(
Source code,png,hires.png,pdf)
Methods
HSGPPeriodic.__init__(**data)Create a new model by parsing and validating input data from keyword arguments.
HSGPPeriodic.construct([_fields_set])HSGPPeriodic.copy(*[, include, exclude, ...])Returns a copy of the model.
Create HSGP variable.
Name of the Deterministic variables that are replaced with pm.Flat for out-of-sample.
HSGPPeriodic.dict(*[, include, exclude, ...])HSGPPeriodic.from_dict(data)Create an object from a dictionary.
HSGPPeriodic.json(*[, include, exclude, ...])HSGPPeriodic.model_construct([_fields_set])Creates a new instance of the
Modelclass with validated data.HSGPPeriodic.model_copy(*[, update, deep])!!! abstract "Usage Documentation"
HSGPPeriodic.model_dump(*[, mode, include, ...])!!! abstract "Usage Documentation"
HSGPPeriodic.model_dump_json(*[, indent, ...])!!! abstract "Usage Documentation"
HSGPPeriodic.model_json_schema([by_alias, ...])Generates a JSON schema for a model class.
Compute the class name for parametrizations of generic classes.
HSGPPeriodic.model_post_init(context, /)Override this method to perform additional initialization after
__init__andmodel_construct.HSGPPeriodic.model_rebuild(*[, force, ...])Try to rebuild the pydantic-core schema for the model.
HSGPPeriodic.model_validate(obj, *[, ...])Validate a pydantic model instance.
HSGPPeriodic.model_validate_json(json_data, *)!!! abstract "Usage Documentation"
Validate the given object with string data against the Pydantic model.
HSGPPeriodic.parse_file(path, *[, ...])HSGPPeriodic.parse_raw(b, *[, content_type, ...])HSGPPeriodic.plot_curve(curve[, n_samples, ...])Plot the curve.
Register the data to be used in the model.
HSGPPeriodic.sample_prior([coords])Sample from the prior distribution.
HSGPPeriodic.schema([by_alias, ref_template])HSGPPeriodic.schema_json(*[, by_alias, ...])Convert the object to a dictionary.
HSGPPeriodic.update_forward_refs(**localns)HSGPPeriodic.validate(value)Attributes
model_computed_fieldsmodel_configConfiguration for the model, should be a dictionary conforming to [
ConfigDict][pydantic.config.ConfigDict].model_extraGet extra fields set during validation.
model_fieldsmodel_fields_setReturns the set of fields that have been explicitly set on this model instance.
lsscalecov_funcperiodmXX_middimstransformdemeaned_basis