BaseValidateMMM#
- class pymc_marketing.mmm.base.BaseValidateMMM(date_column=FieldInfo(annotation=NoneType, required=True, description='Column name of the date variable.'), channel_columns=FieldInfo(annotation=NoneType, required=True, description='Column names of the media channel variables.', metadata=[MinLen(min_length=1)]), model_config=FieldInfo(annotation=NoneType, required=False, default=None, description='Model configuration.'), sampler_config=FieldInfo(annotation=NoneType, required=False, default=None, description='Sampler configuration.'))[source]#
Base class with some validation of the inputs.
Methods
BaseValidateMMM.__init__([date_column, ...])Initialize model configuration and sampler configuration for the model.
Convert the model configuration and sampler configuration from the attributes to keyword arguments.
Build model from the InferenceData object.
BaseValidateMMM.build_model(X, y, **kwargs)Create an instance of
pm.Modelbased on provided data and model_config.BaseValidateMMM.compute_channel_contribution_original_scale([prior])Compute the channel contributions in the original scale of the target variable.
Get the contributions of each channel over time.
Create the fit_data group based on the input data.
Create attributes for the inference data.
BaseValidateMMM.fit(X[, y, progressbar, ...])Fit a model using the data passed as a parameter.
BaseValidateMMM.get_channel_contribution_share_samples([prior])Get the share of channel contributions in the original scale of the target variable.
BaseValidateMMM.get_errors([original_scale])Get model errors posterior distribution.
Return the target transformer pipeline used for preprocessing the target variable.
BaseValidateMMM.graphviz(**kwargs)Get the graphviz representation of the model.
BaseValidateMMM.load(fname)Create a ModelBuilder instance from a file.
Create a ModelBuilder instance from an InferenceData object.
Plot the share of channel contributions in a forest plot.
Plot the target variable and the posterior predictive model components.
BaseValidateMMM.plot_errors([original_scale, ax])Plot model errors by taking the difference between true values and predicted.
BaseValidateMMM.plot_grouped_contribution_breakdown_over_time([...])Plot a time series area chart for all channel contributions.
Plot the posterior predictive distribution from the model fit.
Plot the prior predictive distribution from the model fit.
BaseValidateMMM.plot_prior_vs_posterior(var_name)Plot the prior vs posterior distribution for a specified variable in a 3 columngrid layout.
BaseValidateMMM.plot_waterfall_components_decomposition([...])Create a waterfall plot.
Perform transformation on the model after sampling.
BaseValidateMMM.predict([X, extend_idata])Use a model to predict on unseen data and return point prediction of all the samples.
BaseValidateMMM.predict_posterior([X, ...])Generate posterior predictive samples on unseen data.
BaseValidateMMM.predict_proba([X, ...])Alias for
predict_posterior, for consistency with scikit-learn probabilistic estimators.BaseValidateMMM.preprocess(target, data)Preprocess the provided data according to the specified target.
Sample from the model's posterior predictive distribution.
BaseValidateMMM.sample_prior_predictive([X, ...])Sample from the model's prior predictive distribution.
BaseValidateMMM.save(fname)Save the model's inference data to a file.
BaseValidateMMM.set_idata_attrs([idata])Set attributes on an InferenceData object.
BaseValidateMMM.table(**model_table_kwargs)Get the summary table of the model.
BaseValidateMMM.validate(target, data)Validate the input data based on the specified target type.
Validate the channel columns.
Validate the date column.
Validate the target column.
Attributes
Xdefault_model_configReturn a class default configuration dictionary.
default_sampler_configReturn a class default sampler configuration dictionary.
fit_resultGet the posterior fit_result.
idGenerate a unique hash value for the model.
methodsGet all methods of the object.
output_varReturns the name of the output variable of the model.
posteriorposterior_predictivepredictionspreprocessing_methodsA property that provides preprocessing methods for features ("X") and the target variable ("y").
priorprior_predictivevalidation_methodsA property that provides validation methods for features ("X") and the target variable ("y").
versionymodeldate_columnchannel_columns